doi: 10.17586/2226-1494-2019-19-3-451-457


ENHANCEMENT OF Eu3+ PHOTOLUMINESCENCE IN SODIUM-ALUMINOSILICATE GLASSES BY SILVER MOLECULAR CLUSTERS FORMED WITH Na+–Ag+ ION EXCHANGE METHOD

D. V. Marasanov, E. M. Sgibnev, N. V. Nikonorov


Read the full article  ';
For citation:
Marasanov D.V.,Sgibnev E.M., Nikonorov N.V. Enhancement of Eu3+ photoluminescence insodium-aluminosilicate glassesby silvermolecula rclusters for med with Na+-Ag+ionexchangemethod. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 3, pp. 451–457 (in Russian). doi:10.17586/2226-1494-2019-19-3-451-457


Abstract
Subject of Research. The paper considers the interaction of silver molecular clusters with trivalent europium ions in ion- exchanged layers of sodium-aluminosilicate glasses. Method. Glasses based on Na2O–ZnO–Al2O3–SiO2–F system anddoped with Sb2O3 and Eu2О3 were synthesized for the study. Silver ions were introduced into the synthesized glasses by low-temperature Na+–Ag+ ion exchange method; glass samples were immersed in a bath containing a melt of nitrate mixture 5AgNO3/95NaNO3 (mol%) at 320 °C for 15 minutes. To promote the growth of silver molecular clusters in ion-exchanged samples they were heat-treated at 350–450 °С for 20 hours. Heat treatment temperature was 500 °С for obtaining silver nanoparticles in the samples. Main Results. We have studied the spectral-luminescent properties of sodium-aluminosilicate glasses doped with silver molecular clusters and trivalent europium ions in ion-exchanged layers. Luminescence intensity of Eu3+ ions in the ion-exchanged glass with silver molecular clusters was found out to exceed considerably the intensity in the as-synthesized glass. Glass samples heat-treated at 450 °С are characterized by maximal emission intensity of silver molecular clusters and europium ions. Quenching of the luminescence was observed for the samples containing silver nanoparticles. Practical Relevance. Obtained results can be applied for developing phosphors in glass for LEDs and down-converters of ultraviolet radiation for solar cells

Keywords: silver molecular clusters, silver nanoparticles, photoluminescence, europium, low temperature Na+–Ag+ ion exchange, sodium- aluminosilicate glass

Acknowledgements. This study was supported by the Ministry of Science and Higher Education of the Russian Federation, project No. 16.1651.2017/4.6.

References
1. Diez I., Kanyuk M.I., Demchenko A.P., Walther A., Jiang H., Ikkala O., Ras R.H.A. Blue, green and red emissive silver nanoclusters formed in organic solvents. Nanoscale, 2012, vol. 4, no. 15, pp. 4434–4437. doi: 10.1039/c2nr30642e
2. De Cremer G., Coutino-Gonzalez E., Roeffaers M.B.J., Moens B., Ollevier J., Van Der Auweraer M., Schoonheydt R., Jacobs P.A., De Schryver F.C., Hofkens J., De Vos D.E., Sels B.F., Vosch T. Characterization of fluorescence in heat- treated silver-exchanged zeolites. Journal of American Chemical Society, 2009, vol. 131, no. 8, pp. 3049–3056. doi: 10.1021/ja810071s
3. Fedrigo S., Harbich W., Buttet J. Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices. The Journal of Chemical Physics, 1993, vol. 99, no. 8, pp. 5712–5717.
4. Rabin I., Schulze W., Ertl G., Felix C., Sieber C., Harbich W., Buttet J. Absorption and fluorescence spectra of Ar-matrix- isolated Ag3 clusters. Chemical Physics Letters, 2000, vol. 320, no. 1-2, pp. 59–64.
5. Felix C., Sieber C., Harbich W., Buttet J., Rabin I., Schulze W., Ertl G. Fluorescence and excitation spectra of Ag4 in an argon matrix. Chemical Physics Letters, 1999, vol. 313, no. 1-2, pp. 105–109.
6. Maurel C., Cardinal T., Bellec M., Canioni L., Bousquet B., Treguer M., Videau J.J., Choia J., Richardson M. Luminescence properties of silver zinc phosphate glasses following different irradiations. Journal of Luminescence, 2009, vol. 129, no. 12, pp. 1514–1518. doi: 10.1016/j.jlumin.2008.12.023
7. Royon A., Bourhis K., Bellec M., Papon G., Bousquet B., Deshayes Y., Cardinal T., Canioni L. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Advanced Materials, 2010, vol. 22, no. 46, pp. 5282–5286. doi: 10.1002/adma.201002413
8. Bellec M., Royon A., Bourhis K., Choi J., Bousquet B., Treguer M., Cardinal T., Videau J.-J., Richardson M., Canioni L. 3D patterning at the nanoscale of fluorescent emitters in glass. Journal of Physical Chemistry C, 2010, vol. 114, no. 37, pp. 15584–15588. doi: 10.1021/jp104049e
9. Bourhis K., Royon A., Papon G., Bellec M., Petit Y., Canioni L., Dussauze M., Rodriguez V., Binet L., Caurant D., Treguer M.,
Videau J.-J., Cardinal T. Formation and thermo-assisted stabilization of luminescent silver clusters in photosensitive glasses. Materials Research Bulletin, 2013, vol. 48, no. 4, pp. 1637–1644. doi: 10.1016/j.materresbull.2013.01.003
10. Smetanina E., Chimier B., Petit Y., Varkentina N., Fargin E., Hirsch L., Cardinal T., Canioni L., Duchateau G. Modeling of cluster organization in metal-doped oxide glasses irradiated by a train of femtosecond laser pulses. Physical Review A, 2016, vol. 93, no. 1, pp. 1–15. doi: 10.1103/physreva.93.013846
11. Spierings G. Optical absorption of Ag+ ions in 11(Na, Ag)2O·11B2O3·78SiO2 glass. Journal of Non-Crystalline Solids, 1987, vol. 94, no. 3, pp. 407–411. doi: 10.1016/s0022-3093(87)80075-3
12. Sgibnev E.M., Nikonorov N.V., Ignat’ev A.I. Spectral-lumi- nescent properties of silver molecular clusters and nanoparticles formed by ion exchange in antimony-doped photo-thermo- refractive glasses. Optics and Spectroscopy, 2017, vol. 122, no. 1, pp. 133–138. doi: 10.1134/s0030400x1701026x
13. Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I. High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: influence of antimony content and heat treatment parameters. Journal of Luminescence, 2017, vol. 188, pp. 172–179. doi: 10.1016/j.jlumin.2017.04.028
14. Kuznetsov A.S., Tikhomirov V.K., Shestakov M.V., Moshchalkov V.V. Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors. Nanoscale, 2013, vol. 5, no. 21, pp. 10065. doi: 10.1039/c3nr02798h
15. Klyukin D.A., Sidorov A.I., Ignatiev A.I., Nikonorov N.V., Silvennoinen M., Svirko Yu.P. Formation of luminescence centers and nonlinear optical effects in silver-containing glasses under femtosecond laser pulses. Optics and Spectroscopy, 2015, vol. 119, no. 3, pp. 456–459. doi: 10.1134/s0030400x15090143
16. Khalil A.A., Berube J.P., Danto S., Desmoulin J.C., Cardinal T., Petit Y., Vallee R., Canioni L. Direct laser writing of a new type of waveguides in silver containing glasses. Scientific Reports, 2017, vol. 7, no. 1, art. 11124. 9 p. doi: 10.1038/s41598-017-11550-0
17. Sgibnev Y., Cattaruzza E., Dubrovin V., Vasilyev V., Nikonorov N. Photo-thermo-refractive glasses doped with silver molecular clusters as luminescence downshifting material for photovoltaic applications. Particle and Particle Systems Characterization, 2018, vol. 35, no. 12. doi: 10.1002/ppsc.201800141
18. Ye S., Guo Z., Wang H., Li S., Liu T., Wang D. Evolution of Ag species and molecular-like Ag cluster sensitized Eu3+ emission in oxyfluoride glass for tunable light emitting. Journal of Alloys and Compounds, 2016, vol. 685, pp. 891–895. doi: 10.1016/j.jallcom.2016.06.226
19. Amjad R.J., Dousti M.R., Sahar M.R., Shaukat S.F., Ghos- tal S.K., Sazali E.S., Nawaz F. Silver nanoparticles enhanced luminescence of Eu3+-doped tellurite glass. Journal of Luminescence, 2014, vol. 154, pp. 316–321. doi: 10.1016/j.jlumin.2014.05.009
20. Dousti M.R., Sahar M.R., Rohani M.S., Samavati A., Mahraz Z.A., Amjad R.J., Awang A., Arifin R. Nano-silver enhanced luminescence of Eu3+-doped lead tellurite glass. Journal of Molecular Structure, 2014, vol. 1065–1066, pp. 39– 42. doi: 10.1016/j.molstruc.2014.02.032
21. Vijayakumar R., Marimuthu K. Luminescence studies on Ag nanoparticles embedded Eu3+ doped boro-phosphate glasses. Journal of Alloys and Compounds, 2016, vol. 665, pp. 294–303. doi: 10.1016/j.jallcom.2016.01.049
22. Zhao J., Yang Z., Yu C., Qiu J., Song Z. Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion- exchange process: Energy transfer investigation from molecule like Ag nano-clusters to Eu3+ ions. Chemical Engineering Journal, 2018, vol. 341, pp. 175–186. doi: 10.1016/j.cej.2018.02.028
23. Alekseev N.E., Gapontsev V.I., Zhabotinskii M.E. Laser Phosphate Glasses. Moscow, Nauka Publ., 1980, 352 p. (in Russian)
24. Sgibnev E.M., Ignatiev A.I., Nikonorov N.V., Efimov A.M., Postnikov E.S. Effects of silver ion exchange and subsequent treatments on the UV–VIS spectra of silicate glasses. I. Undoped, CeO2-doped, and (CeO2 + Sb2O3)-codoped photo-thermo- refractive matrix glasses. Journal of Non-Crystalline Solids, 2013, vol. 378, pp. 213–226. doi: 10.1016/j.jnoncrysol.2013.07.010
25. Sgibnev E.M. Optical and spectral properties of silver ion- exchange layers in photo-thermo-refractive glasses. Dis. PhD Eng. Sci. St. Petersburg, 2017. (in Russian)
26. Cattaruzza E., Caselli V.M., Mardegan M., Gonella F., Bottaro G., Quaranta A., Valotto G., Enrichi F. Ag+↔ Na+ ion exchanged silicate glasses for solar cells covering: downshifting properties. Ceramics International, 2015, vol. 41, no. 5, pp. 7221–7226. doi: 10.1016/j.ceramint.2015.02.060
27. Gokcea M., Senturkb U., Uslua D.K., Burgaza G., Sahinc Y., Gokced A.G. Investigation of europium concentration dependence on the luminescent properties of borogermanate glasses. Journal of Luminescence, 2017, vol. 192, pp. 263–268. doi: 10.1016/j.jlumin.2017.06.041
28. Shwetha M., Eraiah B. Influence of europium (Eu3+) ions on the optical properties of lithium zinc phosphate glasses. IOP Conf. Series: Materials Science and Engineering, 2018, vol. 310, art. 012033, 7 p.
doi: 10.1088/1757-899x/310/1/012033


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика